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1 Introduction

This paper largely serves as a translation of Formes modulaires de poids 1 by
Deligne and Serre [DS74], in which they prove the following result:

Theorem 1.1. Let N ≥ 1 be an integer, ε a Dirichlet character mod N such
that ε(−1) = −1, and f a nonzero modular form of weight 1, level Γ0(N), and
character ε. Suppose that f is an eigenform for Tp, p ∤ N , with eigenvalues ap.
Then there exists a representation

ρ : GQ → GL2(C)

that is unramified away from N and such that for all p ∤ N ,

Tr(ρ(Frobp)) = ap and det(ρ(Frobp)) = ε(p)

Furthermore, this representation is irreducible if f is a cusp form.

Note that, as compared to Theorem 3.1 below, the representation ρ attached
to a weight 1 modular form f is complex rather than λ-adic. One way to explain
this is via L-functions. Let f be a cusp form of weight k, level Γ0(N), and
character ε, and let

∑
n≥1 anq

n be its q-expansion. Recall that the L-function
of f is given by

L(f, s) =

∞∑
n=1

ann
−s

Its completed L-function is given by

Λ(f, s) =

(√
N

2π

)s

Γ(s)L(f, s)

Now, define the modular form g by g(z) = (
√
Nz)−kf(−1/Nz); it is a cusp

form of weight k, level Γ0(N), and character ε. Writing
∑

n≥0 bnq
n for the

q-expansion of g, its L-function and completed L-function are defined as above.
We have the following fundamental theorem due to Hecke (see, for example,
Theorem 4.3.5 in [Miy06]):
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Theorem 1.2. With notation as above, we have that Λ(f, s) is entire, bounded
in vertical strips, and the following functional equation is satisfied:

Λ(f, s) = ikΛ(g, k − s)

It turns out that these conditions are (nearly) sufficient to give a sort of
converse. The following theorem is due to Weil (see Theorem 4.3.15 in [Miy06]):

Theorem 1.3. Let f(z) =
∑

n≥1 anq
n and g(z) =

∑
n≥1 bnq

n be two series such
that an, bn = O(nα) for some α > 0. Fix integers N, k and a Dirichlet character
ε : (Z/NZ)∗ → C∗ such that ε(−1) = (−1)k. Then f is a cusp form of weight
k, level Γ0(N), and character ε, and g is given by g(z) = (

√
Nz)−kf(−1/Nz),

as long as the following conditions are satisfied:

(i) Λ(f, s), Λ(g, s) are entire, bounded in vertical strips, and satisfy the func-
tional equation

Λ(f, s) = ikΛ(g, k − s)

(ii) The L-functions of twists of f, g by Dirichlet characters are entire, bounded
in vertical strips, and satisfy a certain functional equation.

In the case that f is a noramlized newform for the Hecke operators Tp, p ∤ N ,
the L-function of f splits into Euler factors (Theorem 4.5.16 in [Miy06]):

L(f, s) =
∏
p

(1− app
−s + ε(p)pk−1p−2s)−1

Note that ε(p) = 0 if p | N .
The appearance of L-functions in other branches of math is a primary mo-

tivator in the association of modular (or, more generally, automorphic) forms
to seemingly unrelated objects. For example, an elliptic curve E/Q has an
associated L-function given by

L(E, s) =
∏
p∤NE

(1− app
−s + p · p−2s)−1

∏
p|NE ,p2∤NE

(1± p−s)−1

where NE is the conductor of E and ap = p + 1 − |E(Fp)|. Thus, if L(E, s) is
given by the L-function of a modular form, it better be a weight 2 newform;
this is precisely the Modularity Theorem.

In the case of weight 1 cusp forms, we find a connection to Artin L-functions
(see section VII.10 of [Neu99] for more detail). Let ρ : GK → GL(V ) be a
complex representation of the absolute Galois group of a number field K. For
a prime p of K, we define the local L-factor of ρ as

Lp(ρ, s) = det
(
1−N(p)−sρ|V Ip (Frobp)

)−1

where N(p) = |OK/p| is the absolute norm, V Ip is the subspace of V fixed by
the inertia subgroup Ip at p, and Frobp is a choice of Frobenius element at p.
The Artin L-function of ρ is

L(ρ, s) =
∏
p

Lp(ρ, s)
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We obtain a completed Artin L-function by multiplying by the “infinite local
factors”

Λ(ρ, s) = A(ρ)s/2L∞(ρ, s)L(ρ, s)

The completed L-function satisfies the following functional equation:

Λ(ρ, s) = W (ρ)Λ(ρ∗, 1− s)

where ρ∗ is the dual representation and W (ρ) is a complex constant of modulus
1, called the Artin root number.

Since modular forms correspond to 2-dimensional Galois representations, we
are particularly interested in 2-dimensional Artin representations ρ : GQ →
GL2(C), specifically in the case when ρ is odd, i.e. det(ρ(c)) = −1 for any
complex conjugation c ∈ GQ. If L(ρ, s) = L(f, s) for some modular form f ,
the functional equation for ρ combined with Weil’s converse theorem strongly
suggests that f should be a weight 1 cusp form. This was the primary motivation
for Deligne and Serre in proving Theorem 1.1. We will not focus too much on
this point throughout the paper, but it should serve as an overarching motivator
for the main result.

2 Classical Results on Galois Representations

Definition 2.1. Let L/K be a finite extension of number fields unramified
at the prime p. The conjugacy class of the Frobenius element of Gal(L/K) is
denoted by Frobp.

If L/K is an infinite extension unramified at p, we obtain a well-defined
conjugacy class Frobp, essentially given by the limit of the conjugacy classes of
each finite subextension.

Proposition 2.2. (Chebotarev Density Theorem) Let L/K be a finite Galois
extension with Galois group G = Gal(L/K), and let S be the set of unramified
primes of K. Let C be a conjugacy class in G. Then the set of primes p ∈ S

such that Frobp = C has density |C|
|G| .

Among the important applications of Chebotarev density is the following
proposition.

Proposition 2.3. Let K be a number field, S a finite set of primes of K, and
KS the maximal extension of K unramified outside of S. The set {Frobp}p/∈S

is dense in GK,S = Gal(KS/K) for the Krull topology.

Proof. By definition of the Krull topology, it suffices to show that for every finite
subextension K ⊂ L ⊂ KS , every element of G = Gal(L/K) is a Frobenius
element. In fact, we get an even stronger statement: every element of G is a
Frobenius element for infinitely many primes p. To see why, let σ ∈ G and
denote by C(σ) its conjugacy class. Chebotarev density says that the set of
p /∈ S such that C(σ) = Frobp has positive density; in particular, C(σ) = Frobp
for infinitely many primes p.
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Another useful result is the following, due to Brauer and Nesbitt. For an
element g ∈ GLn(F ), write P (g) for the characteristic polynomial of g, and
Tr(g) for the trace of g.

Proposition 2.4. (Brauer-Nesbitt Theorem) Let G be a group and F a field. If
ρi : G → GLn(F ), i = 1, 2 are two finite dimensional semisimple representations
such that P (ρ1(g)) = P (ρ2(g)) (or simply Trρ1(g) = Trρ2(g) if charF = 0) for
all g ∈ G, then ρ1 and ρ2 are isomorphic.

The objects of importance in this survey paper are Galois representations,
which are linear representations ρ : GK → GLn(F ) where K is a number field,
GK = Gal(K̄/K) is the absolute Galois group of K, and F is a field. We
are mainly interested in the case when ρ factors through GK,S = Gal(KS/K)
for some finite set S of primes in K. Such a Galois representation is called
unramified almost everywhere.

In more detail, a Galois representation ρ is unramified at a prime p if the
image of the inertia subgroup Ip ⊂ GK is trivial. If ρ is unramified at each prime
p outside of a finite set of primes S, then the image of the group IS = ⟨Ip⟩p/∈S

generated by inertia groups is trivial, and hence ρ factors through GK/IS ∼=
GK,S .

Combining the Brauer-Nesbitt theorem with Chebotarev density yields the
following fundamental result, which states that an ℓ-adic Galois representation
is determined by its traces of Frobenius.

Proposition 2.5. Let K be a number field and ρi : GK → GLn(F ), i = 1, 2
be two semisimple Galois representations which are unramified almost every-
where. Then ρ1 ∼= ρ2 if and only if P (ρ1(Frobp)) = P (ρ2(Frobp)) (or simply
Trρ1(Frobp) = Trρ2(Frobp) if charF = 0) for all primes p at which ρ1 and ρ2
are both unramified.

Note that, while Frobp is not a specific element but a conjugacy class, the
characteristic polynomial and trace are invariant under conjugation.

Proof. One direction of the proof is obvious, so we focus on the other direction.
Let S be the finite set of primes at which either ρ1 or ρ2 ramify. Then ρ1, ρ2
factor through GK,S . Assume that P (ρ1(Frobp)) = P (ρ2(Frobp)) for all primes
p /∈ S (similarly using Tr if charF = 0). Consider the function f : GK,S → F
given by f(g) = P (ρ1(g))−P (ρ2(g)) (again using Tr if charF = 0). This is con-
tinuous since ρ1, ρ2, and P (or Tr) are continuous functions. Since f(Frobp) = 0
for all p /∈ S, and {Frobp}p/∈S is dense inGK,S by Proposition 2.3, f is identically
0. Thus, by Proposition 2.4, ρ1 ∼= ρ2.

3 Galois Representations Attached to Modular
Forms of Weight ≥ 2

We recall the case when f is a modular form of weight ≥ 2. The main result is
the following.
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Theorem 3.1. Let f be a modular form of weight k ≥ 2, level Γ0(N), and
character ε. Suppose that f is an eigenfunction for the Hecke operators Tp,
p ∤ N , with eigenvalues ap. Let K be a finite extension of Q containing the ap
and ε(p), let λ be a finite place of K of residue characteristic ℓ. Then there
exists a semisimple representation

ρλ : GQ → GL2(Kλ)

that is unramified away from Nℓ and such that for all p ∤ Nℓ, we have

Tr(ρλ(Frobp)) = ap and det(ρλ(Frobp)) = ε(p)pk−1

We briefly summarize the cases:

1. f is an Eisenstein series: (due to Hecke; see [Hec83]). This is ar-
guably the simplest case. If f is an Eisenstein series, it is associated to a
unique pair of Dirichlet characters χ1, χ2 of (Z/NZ)× such that χ1χ2 = ε
and χ1(p) + χ2(p) = ap for all p ∤ N . Thus, the corresponding Galois
representation is χ1 ⊕ χ2.

2. f is a weight 2 cusp form: (due to Eichler and Shimura; see chapter 9
of [DS05] for a friendly overview). In this case, we can directly relate f to
a geometric object in order to construct the Galois representation. First,
let J1(N) = Ω∨

X1(N)/H1(X1(N),Z) be the Jacobian variety of the mod-

ular curve X1(N). Recall that ΩX1(N)
∼= S2(Γ1(N)), so in fact J1(N) =

S2(Γ1(N))∨/H1(X1(N),Z). Let Vℓ(X1(N)) = Tℓ(J1(N)) ⊗ Q ∼= Q2g
ℓ de-

note the rational ℓ-adic Tate module of J1(N), where g is the genus of
X1(N). The Hecke algebra H = Z[{Tn, ⟨n⟩}] and GQ both act on J1(N)
and these actions commute with each other, hence the same is true for
Vℓ(X1(N)). Thus, the representation ρX1(N),ℓ : GQ → GL2g(Qℓ) ob-
tained from the Galois action is unramified away from Nℓ and by Eichler-
Shimura it has the property that ρX1(N),ℓ(Frobp) satisfies the polynomial
x2 − Tpx+ ⟨p⟩p for p ∤ Nℓ.

Next, we relate this representation to f . Let If = {T ∈ H : Tf = 0}
be the kernel of the eigenvalue map, and define the d-dimensional abelian
variety Af = J1(N)/IfJ1(N). The quotient of the Hecke algebra H/If
is isomorphic to the ring of integers OK of the field K (as defined in the
theorem statement), and the actions of Tp, ⟨p⟩ on Af under this isomor-
phism are given by ap, ε(p), respectively. Transfering the Galois action to
Af and taking the ℓ-adic Tate module Vℓ(Af ) = Tℓ(Af )⊗Q ∼= Q2d

ℓ gives
a Galois representation ρAf ,ℓ : GQ → GL2d(Qℓ) which is unramified away
from Nℓ and has the property that ρAf ,ℓ(Frobp) satisfies the polynomial
x2 − apx+ ε(p)p for p ∤ Nℓ.

Lastly, one can show that Vℓ(Af ) is a 2-dimensional K ⊗Qℓ-vector space,
hence we obtained a representation ρf,ℓ : GQ → GL2(K ⊗ Qℓ). Decom-
posing K ⊗Qℓ

∼=
∏

λ|ℓ Kλ produces a family of 2-dimensional irreducible

Galois representations ρλ : GQ → GL2(Kλ) which satisfy the conditions
of the theorem.
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3. f is a weight ≥ 2 cusp form: (Due to Deligne; see [Del71]). This case
generalizes the weight 2 case. Here, we cannot directly relate f to an
abelian variety like we did in the weight 2 case. Instead, we resort to étale
cohomology. We assume k ≥ 2 and N ≥ 5. Let π : EY1(N) → Y1(N) be the
universal elliptic curve and ι : Y1(N) ↪−→ X1(N) be the open immersion.
Deligne produced a canonical isomorphism of HR-modules

H1(X1(N)C, ι∗Sym
k−2R1π∗Q)⊗ R ∼−→ Sk(Γ1(N))C

Note that in the k = 2 case, this isomorphism is precisely the isomorphism
ΩX1(N)

∼= S2(Γ1(N)). From this, we obtain thatH1(X1(N)Q, ι∗Sym
k−2R1π∗Qℓ)

is a free HQℓ
-module of rank 2, and hence for any λ|ℓ in K, we obtain a

2-dimensional Kλ-vector space

Vf,λ = H1(X1(N)Q, ι∗Sym
k−2R1π∗Qℓ)⊗HQℓ

Kλ

which satisfies the conditions of the theorem.

By combining Theorem 3.1 with Proposition 2.5, we obtain the following
corollary:

Corollary 3.2. Let (f,N, k, ε, (ap)) and (f ′, N ′, k′, ε′, (a′p)) be as in Theorem
3.1. If the set of primes p such that ap = a′p is density 1, then k = k′, ε = ε′,
and ap = a′p for all p ∤ NN ′.

In fact, for a choice of K and λ, the representations attached to f and f ′

are isomorphic.

4 Reduction mod ℓ

This section covers section 6 of [DS74]. Let K be a number field, λ a finite place
of K, Oλ its ring of valuations, mλ its maximal ideal, kλ = Oλ/mλ the residue
field, and ℓ the characteristic of kλ.

Let f be a modular form of weight k, level Γ0(N), and character ε. We
call f λ-integral if the coefficients of its q-expansion lie in Oλ. If moreover the
coefficients lie in mλ, then we simply write f ≡ 0 (mod λ). If f is λ-integral,
we say that f is an eigenform of Tp (mod λ) with eigenvalue ap ∈ kλ if we have

Tpf − apf ≡ 0 (mod λ)

Proposition 4.1. With the preceding notation, let f be a modular form of
weight k, level Γ0(N), and character ε, with coefficients in K. Suppose that f
is λ-integral, f ̸≡ 0 (mod λ), and that f is an eigenform for Tp (mod λ) with
eigenvalue ap ∈ kλ for p ∤ Nℓ. Let kf be the subfield of kλ generated by the
ap and the reductions (mod λ) of the ε(p). Then there exists a semisimple
representation

ρ : GQ → GL2(kf )

that is unramified away from Nℓ and such that, for all p ∤ Nℓ, we have

Tr(ρ(Frobp)) = ap and det(ρ(Frobp)) ≡ ε(p)pk−1 (mod λ)
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Remark 4.2. Let (K ′, λ′, f ′, k′, ε′, (a′p)) be as in the proposition statement, where

K ⊂ K ′ and λ′ | λ. If ap ≡ a′p (mod λ′) and ε(p)pk−1 ≡ ε′(p)pk
′−1 (mod λ′)

for all p ∤ Nℓ, the proposition is true for f if and only if it is true for f ′. The
determinant condition can be verified as soon as ε = ε′ and k ≡ k′ (mod (ℓ−1))
and the trace condition follows from this provided that f ≡ f ′ (mod λ′).

We will reduce the proof to a simpler situation in two steps:

1. Reduction to the case k ≥ 2: For n > 2 even, let En denote the
normalized (i.e. constant coefficient is 1) weight n Eisenstein series for
SL2(Z). If n is chosen so that ℓ− 1 | n, then En is ℓ-integral and En ≡ 1
(mod ℓ). Then the product fEn ≡ f (mod λ), and the weight k + n ≡ k
(mod ℓ−1). Thus, by Remark 4.2, we can reduce to the case where k ≥ 2.

2. Reduction to the case where f is an eigenform for Tp: It suffices
to prove the proposition for a modular form f ′, as in Remark 4.2, with
k = k′, ε = ε′, and such that f ′ is an eigenform for Tp (not just an
eigenform mod λ′). Such an f ′ exists by the following lemma, applied to
Tp acting on the Oλ-module M of modular forms of weight k, level Γ0(N),
and character ε, with coefficients in Oλ:

Lemma 4.3. Let M be a free module of finite type over a discrete valuation
ring O. Let m be the maximal ideal, k the residue field, and K the field of
fractions. Let T be a set of endomorphisms of M that commute with each
other. Let f ∈ M/mM be a common eigenvector of the T ∈ T , and let aT ∈ k
be the corresponding eigenvalues. Then there exists a discrete valuation ring
O′ containing O, with maximal ideal m′ such that m′ ∩ O = m, and field of
fractions K ′ finite over K, and a nonzero element f ′ ∈ M ′ = M ⊗O O′ which
is a common eigenvector for the T ∈ T with eigenvalues a′T satisfying a′T ≡ aT
(mod m′).

Note that the lemma does not provide a lift of the eigenvector: it only lifts
the eigenvalues.

Proof. Let H be the subalgebra of End(M) generated by T . By taking a finite
extension of scalars, we may assume that H⊗K is a product of Artinian rings
with residue field K. Let χ : H → k be the homomorphism given by hf = χ(h)f
for all h ∈ H. Since H is free over O, there exists a prime ideal p of H contained
in the maximal ideal ker(χ) and such that p ∩ O = 0; it is the kernel of a
homomorphism χ′ : H → O whose reduction mod m is χ. The ideal of H ⊗K
generated by p belongs to the support of the module M ⊗K; we then conclude
that there exists a nonzero element f ′′ of M ⊗ K that is annihilated by this
ideal, i.e. such that hf ′′ = χ′(h)f ′′ for all h ∈ H. We then take for f ′ a nonzero
multiple of f ′′ belonging to M .

Proof of Proposition 4.1. By the above reductions, we may assume that k ≥ 2
and that f is an eigenform for Tp, p ∤ Nℓ. Since Tℓ commutes with Tp, we may
also assume that f is an eigenform for Tℓ if ℓ ∤ N . Let

ρλ : GQ → GL2(Kλ)
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be the representation associated to f given by Theorem 3.1. By replacing ρλ
with an isomorphic representation, we may assume that ρλ(GQ) is contained in

GL2(Ôλ), where Ôλ is the ring of integers of Kλ (i.e. the completion of Oλ).
By reducing the representation ρλ mod λ, we obtain a representation

ρ̃λ : GQ → GL2(kλ)

Let ρ̃ssλ denote the semisimplification of ρ̃λ. This is a semisimple representa-
tion, unramified away from Nℓ, and which satisfies the trace and determinant
conditions of the proposition statement. The group ρ̃ssλ (GQ) is finite, hence by
Proposition 2.3, every element of ρ̃ssλ (GQ) is of the form ρ̃ssλ (Frobp) for some
p ∤ Nℓ. By definition of the field kf , we thus see that for every α ∈ ρ̃ssλ (GQ), the
characteristic polynomial of α has its coefficients in kf . The existence of the
representation ρ then follows from the following lemma.

Lemma 4.4. Let φ : G → GLn(k
′) be a semisimple representation of a group

G over a finite field k′. Let k be a subfield of k′ containing the coefficients of
the characteristic polynomials of φ(g) for all g ∈ G. Then φ is realizable over
k, i.e. it is isomorphic to a representation ρ : G → GLn(k).

Proof. In order for φ to be realizable over k, it suffices to show that φ is iso-
morphic to σ(φ) for any k-automorphism σ of k′. This is because the Brauer
group of a finite field is trivial, hence the Schur index must be 1. Since φ and
σ(φ) have the same characteristic polynomials, and are both semisimple, they
must be isomorphic.

5 Analytic Results on Mod ℓ Galois Represen-
tations

This section covers most of section 4, section 7, and the beginning of section
8 of [DS74]. We prove a few analytic properties of modular forms and Galois
representations. The end product is that we establish an upper bound on the
cardinality of the image of the mod ℓ Galois representations constructed in
Section 4.

To begin, we have the following proposition, which we state without proof.

Proposition 5.1. Let f be a nonzero cusp form of weight k, level Γ0(N), and
character ε. We suppose that f is an eigenform for Tp, p ∤ N , with eigenvalues
ap. Then the series

∑
p∤N |ap|2p−s converges for all real s > k, and we have∑

p∤N

|ap|2p−s ≤ log(1/(s− k)) +O(1) for s → k

Our primary interest in the preceding result is that it implies a rather strong
finiteness result on the eigenvalues ap which show up in weight 1 modular forms.
Before proving this result, we need a definition.
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Definition 5.2. Let P be the set of prime numbers and X ⊂ P a subset. Define
the upper density of X to be

dens.supX = lim sup
s→1,s>1

( ∑
p∈X

p−s

)
/ log(1/(s− 1))

This is a number between 0 and 1.

Proposition 5.3. We assume the same hypotheses as in Proposition 5.1, and
we further assume that the weight k of f is 1. Then, for all η > 0, there exists a
set Xη of primes numbers and a finite subset Yη ⊂ C of complex numbers such
that

dens.supXη ≤ η and ap ∈ Yη for all p /∈ Xη

Proof. It is known that the ap are contained in the ring of integers of a finite
extension K of Q. If c ≥ 0 is a constant, denote by Y (c) the set of integral
elements a of K such that |σ(a)|2 ≤ c for all embeddings σ : K ↪−→ C; this is a
finite set. Denote by X(c) the set of prime numbers p such that ap /∈ Y (c). It
is sufficient to prove that dens.supX(c) ≤ η for large enough c.

For any embedding σ of K into C, σ(f) is a modular form of weight 1,
level Γ0(N), and character σ(ε), and satisfies Tpσ(f) = σ(ap)σ(f). Thus, by
Proposition 5.1, we have∑

σ

∑
p

|σ(ap)|2p−s ≤ r log(1/(s− 1)) +O(1) for s → 1

where r = [K : Q]. Since
∑

σ|σ(ap)|2 ≥ c if p ∈ X(c), we conclude that

c
∑

p∈X(c)

p−s ≤ r log(1/(s− 1)) +O(1) for s → 1

hence
dens.supX(c) ≤ r/c

and it is enough to take c ≥ r/n.

Next, we prove a result on upper bounds of the cardinality of linear groups
over finite fields. Let ℓ be a prime number and let Fℓ be the finite field of ℓ
elements. Let η,M be positive numbers, and let G be a subgroup of GL2(Fℓ).
We will make use of the following definition:

Definition 5.4. We say that G satisfies the condition C(η,M) if there exists a
subsetH ⊂ G with |H| ≥ (1−η)|G| such that the set of polynomials det(1−hT ),
h ∈ H, has at most M elements.

We say that G is semisimple if the identity representation G ↪−→ GL2(Fℓ) is
semisimple.

Proposition 5.5. Let η < 1/2 and M ≥ 0. There exists a constant A =
A(η,M) such that, for all prime numbers ℓ and semisimple subgroups G ⊂
GL2(Fℓ) satisfying C(η,M), we have |G| ≤ A.
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Proof. Let G be a semisimple subgroup of GL2(Fℓ). Recall that one of the
following conditions is satisfied:

(a) G contains SL2(Fℓ)

(b) G is contained in a Cartan subgroup T

(c) G is contained in the normalizer of a Cartan subgroup T , and is not
contained in T

(d) The image ofG in PGL2(Fℓ) = GL2(Fℓ)/F∗
ℓ is isomorphic to the symmetric

group S4 or one of the alternating groups A4,A5

We provide an upper bound of |G| in each case.

Case (a) – We set r = [G : SL2(Fℓ)]. Then |G| = rℓ(ℓ2 − 1). On the other
hand, the number of elements of GL2(Fℓ) with a given characteristic polynomial
is ℓ2 + ℓ, ℓ2, or ℓ2 − ℓ, corresponding to when the polynomial in question has 2,
1, or 0 roots in Fℓ, respectively. If G satisfies C(η,M), we then have

(1− η)rℓ(ℓ2 − 1) = (1− η)|G| ≤ |H| ≤ M(ℓ2 + ℓ)

hence
(1− η)r(ℓ− 1) ≤ M

and thus

ℓ ≤ 1 +
M

(1− η)r
≤ 1 +

M

1− η

which gives an upper bound on ℓ, and therefore an upper bound on |G|.
Case (b) – At most 2 elements of T have a given characteristic polynomial.

The hypothesis C(η,M) (with η < 1) therefore gives

(1− η)|G| ≤ 2M

which gives the upper bound

|G| ≤ 2M

1− η

Case (c) – The group G′ = G∩T is index 2 in G. If G satisfies C(η,M), G′

satisfies C(2η,M). Applying case (b) to G′, we obtain

|G| ≤ 4M

1− 2η

Case (d) – The image of G in PGL2(Fℓ) has order at most 60. The group
G∩SL2(Fℓ) is then of order at most 120, and there are in G at most 120 elements
of a given determinant, hence a fortiori of a given characteristic polynomial. If
G satisfies C(η,M), then we have

(1− η)|G| ≤ 120M

and thus

|G| ≤ 120M

1− η
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We can apply the above theory to the Galois representations constructed
in Section 4. Specifically, let f be a cusp form satisfying the hypotheses of
Theorem 1.1. The numbers ap and ε(p) belong to the ring of integers OK of
a number field K, which we assume to be Galois over Q. Let L be the set of
primes numbers ℓ which split completely in K. For all ℓ ∈ L, we choose a place
λℓ of K above ℓ; the corresponding residue field is equal to Fℓ. By Proposition
4.1, there exists a continuous semisimple representation

ρℓ : GQ → GL2(Fℓ)

which is unramified away from Nℓ and such that

det(1− ρℓ(Frobp)T ) ≡ 1− apT + ε(p)T 2 (mod λℓ) if p ∤ Nℓ

Let Gℓ denote the subgroup of GL2(Fℓ) given by the image of ρℓ.

Lemma 5.6. With notation as above, for all η > 0, there exists a constant M
such that Gℓ satisfies the condition C(η,M) for all ℓ ∈ L.

Proof. By Proposition 5.3, there exists a subset Xη of the set P of prime num-
bers such that dens.supXη ≤ η and that the ap for p /∈ Xη form a finite set.
Denote by M the finite set of polynomials 1−apT + ε(p)T 2 for p /∈ Xη, and set
M = |M|. We claim that Gℓ satisfies C(η,M) for all ℓ ∈ L. Indeed, let Hℓ be
the subset of Gℓ of Frobenius elements ρℓ(Frobp) for p /∈ Xη and their conju-
gates. By Chebotarev density (Proposition 2.2), we have that |Hℓ| ≥ (1−η)|Gℓ|.
On the other hand, if h ∈ Hℓ, the polynomial det(1− hT ) is the reduction mod
λℓ of an element of M, so it belongs to a set of at most M elements. The
condition C(η,M) is therefore satisfied.

Corollary 5.7. There exists a constant A such that |Gℓ| ≤ A for all ℓ ∈ L.

Proof. This follows immediately by the preceding lemma combined with Propo-
sition 5.5.

6 Galois Representations Attached to Modular
Forms of Weight 1

In this section, we prove Theorem 1.1, covering the rest of section 8 of [DS74].

Proof of Theorem 1.1. We can assume that f is either an Eisenstein series or
a cusp form. If f is an Eisenstein series, the proof is identical to the weight
≥ 2 case: there exist characters χ1, χ2 of (Z/NZ)∗ such that χ1 · χ2 = ε and
χ1(p) + χ2(p) = ap for p ∤ N , and the reducible representation ρ is given by
ρ = χ1 ⊕ χ2.

Henceforth, we assume that f is a cusp form. We recall the notation of the
end of section 5: let K be a finite Galois extension of Q such that its ring of
integers OK contains the numbers ap and ε(p), and let L be the set of prime
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numbers which split completely in K. For each ℓ ∈ L, choose a place λℓ of
K over ℓ; its residue field is Fℓ. By Proposition 4.1, there exists a continuous
semisimple representation

ρℓ : GQ → GL2(Fℓ)

which is unramified away from Nℓ and such that

det(1− ρℓ(Frobp)T ) ≡ 1− apT + ε(p)T 2 (mod λℓ) if p ∤ Nℓ

Let Gℓ denote the subgroup of GL2(Fℓ) given by the image of ρℓ. By Corollary
5.7, we may choose a constant A such that |Gℓ| ≤ A for all ℓ ∈ L. By enlarging
K (which would reduce L), we may assume that K contains the nth roots of
unity for all n ≤ A. Let Y be the set of polynomials (1 − αT )(1 − βT ), where
α, β are roots of unity of order ≤ A. If p ∤ N , for all ℓ ∈ L with ℓ ̸= p there
exists R(T ) ∈ Y such that

1− apT + ε(p)T 2 ≡ R(T ) (mod λℓ)

Since Y is finite, there exists an R such that the above congruence is satisfied
for infinitely many ℓ, and thus we have an equality

1− apT + ε(p)T 2 = R(T )

In other words, the polynomials 1− apT + ε(p)T 2 are contained in Y .
Let L′ be the set of ℓ ∈ L such that ℓ > A and that R,S ∈ Y,R ̸= S implies

R ̸≡ S (mod λℓ); the set of L \ L′ is finite, so L′ is infinite. Let ℓ ∈ L′. The
order of the group Gℓ is prime to ℓ. It then follows, by a standard argument,
that the identity representation Gℓ → GL2(Fℓ) is the reduction mod λℓ of a
representation Gℓ → GL2(Oλℓ

), where Oλℓ
is the valuation ring for λℓ. By

combining this representation with the canonical map GQ → Gℓ, we obtain the
representation

ρ : GQ → GL2(Oλℓ
)

By construction, ρ is unramified away from Nℓ. If p ∤ Nℓ, the eigenvalues
of the Frobenius element ρ(Frobp) are roots of unity of order ≤ A (because the
image of ρ is isomorphic to Gℓ, so has order ≤ A); thus, det(1−ρ(Frobp)T ) ∈ Y .
On the other hand, because the reduction of ρ mod λℓ is ρℓ, we have

det(1− ρ(Frobp)T ) ≡ 1− apT + ε(p)T 2 (mod λℓ)

But the two polynomials det(1−ρ(Frobp)T ) and 1−apT +ε(p)T 2 are contained
in Y . Since they are congruence mod λℓ, they are equal, hence we have

det(1− ρ(Frobp)T ) = 1− apT + ε(p)T 2 for all p ∤ Nℓ

Let’s now consider another prime number ℓ′ ∈ L′. We obtain a represen-
tation ρ′ : GQ → GL2(Oλℓ′ ) in the same way as above, but for p ∤ Nℓ′. In
particular, we have

det(1− ρ(Frobp)T ) = det(1− ρ′(Frobp)T ) for all p ∤ Nℓℓ′
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By Proposition 2.5, this implies that ρ and ρ′ are isomorphic as representations
of K, and a fortiori as complex representations. It follows that ρ is unramified
away from N , and that

det(1− ρ(Frobp)T ) = 1− apT + ε(p)T 2 for all p ∤ N

It remains to show that ρ is irreducible. Suppose ρ is reducible, so it is the
sum of two 1-dimensional representations. That is, there exist characters χ1, χ2

unramified away from N and such that

ap = χ1(p) + χ2(p) for all p ∤ N

Then we have∑
|ap|2p−s = 2

∑
χ1(p)χ2(p)p

−s +
∑

χ2(p)χ1(p)p
−s

As s approaches 1, we have
∑

p−s = log(1/(s− 1))+O(1). On the other hand,
the character χ1χ2 ̸= 1 (otherwise ε = χ2

1 and ε(−1) = 1). It then follows that∑
χ1(p)χ2(p)p

−s = O(1) and
∑

χ2(p)χ1(p)p
−s = O(1)

From this, we obtain that∑
|ap|2p−s = 2 log(1/(s− 1)) +O(1) for s → 1

which contradicts Proposition 5.1.
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